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Scaling SNARK Provers: Motivation
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What are ZK Proofs?
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Peggy: (x,w) Victor: x
A process in which a prover probabilistically convinces a verifier of the
correctness of a mathematical proposition, and the verifier learns nothing else. J

zkSNARK, (zk)Succinct Non-Interactive Argument of Knowledge:
anything where the proof is less than |w|.



Zero-Knowledge Proofs & SNARKSs
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m ZKPs are proofs of computational integrity;

m ZKPs reveal nothing about private inputs of the computation;

m SNARKSs (Succinct Non-Interactive Arguments of Knowledge) are
short proofs, usually independent of computation size
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Applications of SNARKs

m Proving that any computation over encrypted, or compressed data is
correct with very cheap verification!

m Privacy: Hide but Verify.
m Scalability: Compress but Verify.



Applications of SNARKSs
Today

m Proving that any computation over encrypted, or compressed data is
correct with very cheap verification!

m Privacy: Hide but Verify.
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Applications of SNARKSs

Today-ish

Editing authenticated content

Proving computation

with zk-proofs \

Original image

List of tram:
Private Py

Proving
wey

Generate proof

Proof of editing

Credit- Roman Palkin

Using ZK Proofs to Fight Disinformation By Trisha Datta and Dan Boneh, Mediu
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Applications of SNARKs

Tomorrow
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How are many SNARKSs built?
s FRONTEND

Computation Computation Representation
e.g. Arith. Circuit, Arith. Circuit with Lookups

program model with restricted operations

Algebraic Relations Polynomial Relations
R1CS, Plonkish, CCS
e.g.A,B,Cst.
—  Z satisfies circuit iff —
AZoBZ =CZ

e.g.
HX)A(X)B(X) — C(X)



How are many SNARKSs built?
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How are many SNARKSs built?

= BACKEND

(Preprocessing) Polynomial IOP
SRS
ifqioqg

[Pl s, I
&

P
$pusl$

Az,

Key ldea:

SNARK
4>
Polynomial
commitment SRS,
+
Fiat Shamir

Compressing Step
Cryptography, Comp. Security

Checking Polynomial Identities at Random Points.
Can be done succinctly with Polynomial Commitments.



Example: From Circuits to Algebraic Relations
Statement: C(1,xq,xp, w) = x3 for some w, X public inputs.

° Two multiplication gates g1, 82
25

° 25 = (222) (23 +24)
e @ e z6 = (14 22)z5

z1=1 Zp =X 23 =X z4
1 0 0 0 0 0\ /1 1 1 0 0 0 0 0\ /1 1
01 0 0 0 0 |[n 2 1 0 0 0 0 0 |(= 1
oo 1 0 0 0 [|m| | 5 10 0 0 0 0 [ | 1 -
A= 10 0 0 1 0 0 ||m|T]| = Bz = 1 0 0 o0 o0 o ||z|7] 1 =k
o 2 0o 0o 0o o ||z 2, o 0 1 1 0 o ||z 23+
1 1 0 0 0 0/ \z 142 0 0 0 0o 1 0/ \z 25
2
)
cz-1z= |3
2
2
%6

Statement true <=

AZoBZ=CZ and {z1 = 1,20 = X1,23 = X2,%6 = X3}



From Circuit to Algebraic Relations, Takeaway

Statement: C(1, x1,x2, w) = x3 for some w, X public inputs.
Public Input Relations:
{z1 = 1,20 = x1,23 = X3, 26 = x3}
Hadamard Product Relation:
dob=7<C
Linear Relations:
i=AZ b=BZ = CZ

m Matrices are public, part of the circuit description.

m They are sparse, but of dimension of the extended witness size (inputs +
multiplicative gates).



From Algebraic Relations to Polynomials

Inner Product Relations and the Univariate Sumcheck

mR={ry...,7_1} C %, multiplicative subgroup

(X 1)
Ai(X) :Hﬁ, HX) = [(X=7j).
jAEe e i
Algebraic Formulation Polynomial Formulation ‘
Vector ¥ = (Yo, - -, Yn-1) Polynomial Y(X) = Z?;l yiri(X) ‘
Public Input: Z, X agree on [ positions Z(X) — Y(X) is divisible by #;(X) ‘
Hadamard Product 70b = ¢ A(X)B(X) — C(X) is divisible by #(X) ‘
[Ben-Sasson et al. 18]
Inner product z = f - ¢ 3dR(X), deg R(X) <n—2.
t(X) divides f(X)g(X) —n~'z — XR(X)




From I0Ps to SNARKs

m We can immediately build a non-interactive IOP for any of these relations
o P 7
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From Algebraic Relations to Polynomials

How to prove Many Linear Relations?

Plonk, Hyperplonk, Plonky
Permutation-based
arguments

M is a permutation

TTxX+yi) =TT(x+2).

Private Computation

Statement: i = MZ.

Marlin, Fractal, Spartan
Lincheck-Based Arguments:
Reduce many to one relation
and use inner product

F=MZ=r -j=(F M)z
w.h.p. if ¥ sufficiently random

Private and Public
Computation

1) Private: 71 - = (FT M)Z
2) Public: "M correct.




e.g. Marlin

Commit

Commit to withess Z

A MR MO0

Outer sumcheck
Commit to terms to prove
Hadamard, and 77 (MZ) =74

P

Inner sumcheck

Prove r' M is corr

Open Polynomials

Example of Lincheck-based SNARKs

FTM < H(X) =7 MA(X)

II= (/Tsucf, TpC, 71
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ZK Roll-ups

Blockchain scaling |

Periodically provide proofs for valid transaction batches

~
tx1 | e
tx2 p
tx3
Verify is . txn |
slow ’

*Slides of Anca Nitulescu.




Disadvantadges "Monolithic” SNARKs

m No Incremental Proofs.
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m No Incremental Proofs.

m ZK Markets™:



Disadvantadges "Monolithic” SNARKSs

m No Incremental Proofs.

m ZK Markets*:

tx1

tx2

Anyone with a GPU will be paid to create ZK proofs

tx3

m Linear (or worse) memory in witness size.

market

Vi

-

selects provers
and distributes rewards



Disadvantadges "Monolithic” SNARKSs

m No Incremental Proofs.

m ZK Markets*:

Anyone with a GPU will be paid to create ZK proofs

market

Vi

selects provers

: and distributes rewards
m Linear (or worse) memory in witness size.

m Prover complexity might not scale linearly, i.e. O(nlog, n);
m Harder parallelization.

*Drawing of D.Boneh. ZKProof MOOC Course.
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Proving Many Instances

chunks?

m What if instead of doing a single monolithic proof we cut computation in

Prove (‘\
Prove F
— Prove (x
Prove \
A — .
/}?
L Prove
/‘ -

N

Naive Strategy




Recursive Proof Composition
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Recursion

recurse
Prove one

Prove on top
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Recursion

Incrementally Verifiable Computation

Prove one

-

— Prove on top

-

Prove on top

e

———

/ —




Recursion

Incrementally Verifiable Computation

Prove one R
- >
Prove on top

B

I

D Prove on top
‘ : ——

—

|-




Proof Carrying Data




Recursion Overhead

(xw) ™

N

=

m At each step, proof of corresponding chunk + proof that the previous
proof is accepted by the verifier of the snark.

m Total prover work increases with respect to naive approach.

m SNARK verifier must be a “small” circuit.



Proof Recursion in Elliptic Curves

Verification Arithmetization
Verify = curve operations

Outer snark

Verify(x, )

Operations in Fp,

Inner snark



Proof Recursion in Elliptic Curves

Verification Arithmetization
Verify = curve operations

Outer snark

Prover

E(Fy)

Verify(x, )

Operations in Fp,
Inner snark

Verify in IF,,

Verify in Fy
—
Circuits over [y

. =0
Circuits over [Fp

[m]

=

RN Ge



Proof Recursion in Elliptic Curves

Verification Arithmetization
Verify = curve operations

Outer snark

Prover

E(Fy)

Verify(x, )

Operations in Fp,
Inner snark

[\[o}
efficient

pairings

Verify in IF,,

Verify in Fy
—
Circuits over [y

. =0
Circuits over [Fp

[m]

=
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Folding/Accumulation

Amortizing Prover Work: Probabilistically Reduce Two Statements to one

Folding Scheme

NP language £ with corresponding relation R

m Fold(x1, wy, x2,w2) — X, W0, TEolg

(X“ ) FOLD

Jr‘n I\

/CX, ) e
(x,,0-)

o & O

(Knowledge soundness): If FoldVrfy(xq,x2, x

nFoId) — 0/1, then
(%, &R
(x,)eR = ond

(%, €&




Example

Folding/Accumulation

Xy = ]C‘1 opwms +o CLMWDUL&Q ?4(?() 0.t
?1(&3‘ U
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()( (C‘Ll ! 1.

wr = (p;) f:w) L=M2
' ? D n P

CLAIMS

\
NEW

o ;
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w
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Folding/Accumulation

Example

i =" sps o o phppesel B w2 E
D)= v

wi = " ehaads of i 0"

CLAIMS
(., %‘\)‘JJ'W’ ) g A2
T—%
P -
NEW _ wish pU) 0 PO) = w0,
=c oo prlyo i
cLam |F 7T e ¥
w =" pebael o 3O

VERIFIER
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Recursive Proofs via Folding/Accumulation

m Main idea: at each step execute only some cheap part the SNARK, and
accumulate/fold expensive part. Expensive part is deferred to end of
computation and only proven once.

SNARK Prover

C
Tt local
___________ \—
defer
Verify E]
Accumulator

Defer Expensive parts

<
compute or verify




State-of-the-Art

Bowee Abpe A Tr o e V{x, SRSy, TT)
(1)Full Recursion: (2)Atomic (3)Folding /Split
= 77; SNARK proofs ~ Accumulation: Accumulation:
m V verifies 7; m 71; SNARK proofs
m Fractal,Plonky?2

m V partially verifies 7;
m Halo

B 7T; commitment to
witness + state s;

m V verifies correct

bpe not fully checked.

Commit

folding, i.e. RLC of

commitments —— >
V small

=

HOW MUCH OF SNARK

PROVER IS EXECUTED

= Nova,




FLIP: Fold Inner Product

A. Nitulescu, N.Paslis and C. Rafols. Flip and Prove R1CS. EPRINT IACR.



o

unit1

I

unit2

storage

Proves 32GB submit on chain

Proves 32GB

v

Proves 32GB

W=

unit3

=> storage onboarding limit

Block

m Real-world example of computation naturally split in many chunks (R1CS
instances), one single prover proves many such chunks.

RN Ge



Alternatives?

Verify

Prove
Prove
—— Prove
- Batch Verif
Prove O\ e
. \l !"\7 - )
) |
, Prove R
- . -
Aggregation Recursion
Prove \ Prove one RMS\G\
—L» O ' S Prove on top ﬂ
- Prove - — _
T Aggregate N\
ﬂ — B Fast Verity J\ B
Prove R y
B T —
J ) ——

m Only in recursion with folding prover work is saved by amortization, but
construction is complex (cycles).



How to fold R1CS?

[A.z1]o[B.z1] =C-z,

[az({a])-cn

AZoBZ=A(Zy +1-Z2)o B(Zy +1-Z2)

#CZ.

=AZy0BZ +1-(AZy0o BZy+ AZyo BZy) + 1% - (AZy 0 BZy)

R1CS +r-R1CS

not R1CS



How to fold R1CS?

NOVA - Kothapalli, Setty, Tzialla’22

R1CS

relaxed R1CS

ae
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v
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How to fold R1CS?

NOVA - Kothapalli, Setty, Tzialla’22

R1CS

relaxed R1CS

relaxed R1CS
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How to fold R1CS?

NOVA - Kothapalli, Setty, Tzialla’22

Z1 - (u1l x 3 w1)

N, Zz . (uz’ xz’ wz)
[A-(z1+ rzz)] 0 [B-(z1+ rzz)] .
~—
y 4

=(u+ru)C-(z, +rz)+e

AZOBZ:A210BZ:[+""(A21OBZZ+AZQOBZ])+T2‘(AZQOBZQ)

(viCZy + Ey) +1 - (AZy 0 BZs + AZy 0 BZy) + 1% - (uzCZs + E»)
(ur+7-u2)-C(Z1+1Z3)+ FE
=uCZ+ E.
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Nova FO ld i ng (without cycles)



Nova FO ld i ng (without cycles)



Folding

- Verification linear in
without cVCles # of statements

- @ .
B @\ —_— = SNARK

- Prove one R
\ Fold P
Iy — e Relaxed
/!7 no proof R1CS

m How can we achieve other advantages of recursion: efficient verifier?

it
N)
pe)
0)



Commitment

KeyGen(.n) — ck: 1], [x],, [¥], ... ["]

2

Target-Group Commitment

—F C=e([A][d)e(A,L[],)-.. e([A ][]
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~ FLIP-style Folding




FLIP-style Folding

] 12
: ck’

: E

4 : €y 34
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o, [MVNV@]J_’

" FLIP-style Folding

VW" . E!l
ck” “
o, [W..nglx —_— -— [Eg]T
: -
12 w 34 = E q4
ck’ : -
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W, W = | | |
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Conclusion

m No recursion, no cycles of elliptic curves.

m Cost of prover: one single relaxed R1CS + O(number of instances)
pairings.

m Novel use of homomorphic properties of target group commitments to fold
in parralel.



Holography Accumulation

N.Paslis, C. Rafols and A. Zacharakis. sooon in EPRINT IACR.

RN Ge



Research Question

m What are other meaningful settings in which we can accumulate/amortize
prover work?



Research Question

m What are other meaningful settings in which we can accumulate/amortize
prover work?

m ldea: Leverage Public Computation in privacy preserving delegation of
computation + Recursive Proofs?

Commit

Commit to witness

— A, e, Hos &

Outer sumcheck
Commit to terms to prove
Hadamard, and 7' (M2) = 7' 7 Witness Dependent
P Computation
Inner sumcheck

Open Polynomials |

Mar-lin



Privacy Preserving SNARK Proof Delegation
Blueprint: (EOS,zkSaa$,..)

(t,n) — SS§ if privacy against f-colluding users.
) (x,w) — > (x,wy,..,wy)
o>

w.; (?Tl, b1 P 71’,,) I Checks against |dishoncst servers
|
x \%
Y o IT a (zk)SNARK proof

RN Ge



Research Question

Privacy Preserving SNARK Proof Delegation

(t,n) — SSS if privacy against t-colluding users
(I w) — > (x, w1, .., wy)

(711, 712, .

wn

., 7y) | Checks against dishonest servers

|
I
\\ Wy Ma (zk)SNARK proof

Scenario: Servers do computation as a service for many users, amortize some of the work?

RN Ge



Privacy Preserving SNARK Proof Delegation

Revisited

IT a Mar-lin Proof
N

A e Delegate public computation (INNER
F SUMCHECK) to a single powerful server.

e A Mar-lin proof can then be computed
locally or delegated using privacy-preservir
techniques.

e Verification checks T1+11;;,

IDEA: Accumulate INNER SUMCHECK to reduce
computation per proof

u}
o)
I

i
it
N)
pe)
i)



Public Computation as a Service



Public Computation as a Service




Public Computation as a Service
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Public Computation as a Service
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Public Computation as a Service

Ty



Public Computation as a Service

A

‘ 1 WILL MAKE OMNE FROOF
TO RULE THEM ALL!




Public Computation as a Service

o VN Users need to receive
YA IR proof that final stateme:
/ \ N\ was derived from their
/ / \ \\\ individual statements.
/ - fx* m* \ \ N\
// / \ N
,// \ l\\
/ \
¥ ¥ v A k)
, v 1 ( ), ( Y o) ( Y
s &9 9 & L
ax e . 5

u}
o)
I

i
it
N)
pe)
0)



Public Computation as a Service

2: : Naive solution:

| VN
/ AN
S NN Proof that asserts that ¥,
/ ‘ \ N\, is included in final
// \ N\ statement requires
/ \ N .
T Imo _ \ e knowing all of user’s
// / ! \ ! \\\) statements
// ‘ \ \\
/ /
/ | \ \\\
¥ 4 v N 1

) ¢y €7 €3
“.. - R ‘b‘ S q B ﬁ'. <

axl < 9
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Folding Schemes with Local Verification

N
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Folding Schemes with Local Verification

Fold 2

M Fold 1) P

m—1

m

Give as proef the sibling statements & 2-folding proofs AND Prove only root statement.

Prover: 2m feldings + proof root./ Verifier: verify 71; = O(logm) + one proof.

Fold )




Public Computation aas with Folding Schemes with Local Verification

o Tradeoff cost Server - Verifier |

e Local/Private part: closer to

Xi
Groth16 (dominated by 5 MSMs of
size |m.gates|)

® Verifier checks IT+ 11}, + 7

e Total Amortized Cost x Proof:
essentially local cost.




State-of-the-Art

Bowee Abpe A Tr o e V{x, SRSy, TT)
(1)Full Recursion: (2)Atomic (3)Folding /Split
= 77; SNARK proofs ~ Accumulation: Accumulation:
m V verifies 7; m 71; SNARK proofs
m Fractal,Plonky?2

m V partially verifies 7;
m Halo

B 7T; commitment to
witness + state s;

m V verifies correct

bpe not fully checked.

Commit

folding, i.e. RLC of

commitments —— >
V small

=

HOW MUCH OF SNARK

PROVER IS EXECUTED

= Nova,




State-of-the-Art REVISITED

bsuee Abpc A Dy

« V(x, SRSy, )

(1)Full Recursion:
m 71; SNARK proofs

m V verifies 71;

(2)Atomic
Accumulation:

m 71; SNARK proofs
m Fractal Plonky2 m V partially verifies 7;
= Halo

bpc not fully checked.

m Darlin: b,

HOW MUCH OF SNARK
PROVER IS EXECUTED

. not checked.

(3)Folding/Split
Accumulation:
= 7T; commitment to
witness + state s;

m V verifies correct
folding, i.e. RLC of
commitments —— >
V small

w Nova, ...




Take-away message

m SNARK computation is inherently expensive;

m “Amortization” of prover computation is a key element for scaling provers;

m We have identified three key scenarios where it plays a role:
m Proving many instances of computation without recursion;
m Privacy preserving computation of delegation;

m Recursive proof composition with different tradeoffs.



Take-away message

m SNARK computation is inherently expensive;

m “Amortization” of prover computation is a key element for scaling provers;

m We have identified three key scenarios where it plays a role:

m Proving many instances of computation without recursion;
m Privacy preserving computation of delegation;

m Recursive proof composition with different tradeoffs.

Credits: For the drawings on recursion, folding, and related, the slides are
modified from original slides of Anca Nitulescu. She gives credits for clip arts by
Iconfinder, Flaticon and juicyfish, and for illustrations to Disneyclips.



