
Scaling SNARK Provers

Carla Ràfols

Central European Conference on Cryptology 2025
June 19th, Budapest

Scaling SNARK Provers: Motivation

What are ZK Proofs?

2 5 1 9
8 2 3 6

3 6 7
1 6

5 4 1 9
2 7

9 3 8
2 8 4 7

1 9 7 6

x=“Unsolved Sudoku”

2 5 1 9
8 2 3 6

3 6 7
1 6

5 4 1 9
2 7

9 3 8
2 8 4 7

1 9 7 6

w=“Solved Sudoku”

4 6 7 3 8
5 7 9 1 4

1 9 4 8 2 5
9 7 3 8 5 2 4

3 7 2 6 8
6 8 1 4 9 5 3
7 4 6 2 5 1

6 5 1 9 3
3 8 5 4 2

Peggy: (x, w) Victor: x

Proof

Accept or Reject

A process in which a prover probabilistically convinces a verifier of the
correctness of a mathematical proposition, and the verifier learns nothing else.

zkSNARK, (zk)Succinct Non-Interactive Argument of Knowledge:
anything where the proof is less than |w|.

Zero-Knowledge Proofs & SNARKs

ZKPs are proofs of computational integrity;
ZKPs reveal nothing about private inputs of the computation;
SNARKs (Succinct Non-Interactive Arguments of Knowledge) are
short proofs, usually independent of computation size

|πF| < |F|

Applications of SNARKs

Proving that any computation over encrypted, or compressed data is
correct with very cheap verification!

Privacy: Hide but Verify.
Scalability: Compress but Verify.

Applications of SNARKs
Today

Proving that any computation over encrypted, or compressed data is
correct with very cheap verification!

Privacy: Hide but Verify.

Movie DB
Proof that > 18

Movie

Anonymous Credentials Anonymous Financial Transactions

Scalability: Compress but Verify.

Rollups

Applications of SNARKs
Today-ish

Using ZK Proofs to Fight Disinformation By Trisha Datta and Dan Boneh, Medium.

Applications of SNARKs
Tomorrow

How are many SNARKs built?

FRONTEND

Computation Computation Representation
e.g. Arith. Circuit, Arith. Circuit with Lookups

−→

program model with restricted operations

Algebraic Relations Polynomial Relations
R1CS, Plonkish, CCS

−→
e.g.A, B, C s.t.

z⃗ satisfies circuit iff
A⃗z ◦ B⃗z = C⃗z

→ e.g.
t(X)|A(X)B(X)− C(X)

How are many SNARKs built?

BACKEND

(Preprocessing) Polynomial IOP SNARK

−→
Polynomial
commitment

+
Fiat Shamir

SRS, π

How are many SNARKs built?

BACKEND

(Preprocessing) Polynomial IOP SNARK

−→
Polynomial
commitment

+
Fiat Shamir

SRS, π

Compressing Step
Cryptography, Comp. Security

Key Idea:
Checking Polynomial Identities at Random Points.
Can be done succinctly with Polynomial Commitments.

Example: From Circuits to Algebraic Relations

Statement: C(1, x1, x2, w) = x3 for some w, x⃗ public inputs.

z1 = 1 z2 = x1 z3 = x2 z4

+ ×2 +

×

×

z6 = x3

z5

z5 = (2z2)(z3 + z4)

z6 = (1 + z2)z5

Two multiplication gates g1, g2

A⃗z =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 2 0 0 0 0
1 1 0 0 0 0




1

z2
z3
z4
z5
z6

 =


1

z2
z3
z4

2z2
1 + z2

 , B⃗z =


1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0




1

z2
z3
z4
z5
z6

 =


1
1
1
1

z3 + z4
z5

 , C⃗z = I⃗z =


z1
z2
z3
z4
z5
z6



C⃗z = I⃗z =


z1
z2
z3
z4
z5
z6


Statement true ⇐⇒

A⃗z ◦ B⃗z = C⃗z, and {z1 = 1, z2 = x1, z3 = x2, z6 = x3}

From Circuit to Algebraic Relations, Takeaway

Statement: C(1, x1, x2, w) = x3 for some w, x⃗ public inputs.
1 Public Input Relations:
{z1 = 1, z2 = x1, z3 = x2, z6 = x3}

2 Hadamard Product Relation:
a⃗ ◦ b⃗ = c⃗

3 Linear Relations:
a⃗ = A⃗z, b⃗ = B⃗z, c⃗ = C⃗z.

Matrices are public, part of the circuit description.
They are sparse, but of dimension of the extended witness size (inputs +
multiplicative gates).

From Algebraic Relations to Polynomials
Inner Product Relations and the Univariate Sumcheck

R = {r0, . . . , rn−1} ⊂ F∗
p, multiplicative subgroup

λi(X) = ∏
j ̸=i

(X − rj)

(ri − rj)
, t(X) = ∏

j
(X − rj).

Algebraic Formulation Polynomial Formulation

Vector y⃗ = (y0, . . . , yn−1) Polynomial Y(X) = ∑n−1
i=0 yiλi(X)

Public Input: z⃗, x⃗ agree on l positions Z(X)− Y(X) is divisible by tl(X)

Hadamard Product a⃗ ◦ b⃗ = c⃗ A(X)B(X)− C(X) is divisible by t(X)

[Ben-Sasson et al. 18]
Inner product z = f⃗ · g⃗ ∃R(X), deg R(X) ≤ n − 2.

t(X) divides f (X)g(X)− n−1z − XR(X)

From IOPs to SNARKs

We can immediately build a non-interactive IOP for any of these relations.

From Algebraic Relations to Polynomials
How to prove Many Linear Relations?

Example of Lincheck-based SNARKs
e.g. Marlin

∗Slides of Anca Nitulescu.

Disadvantadges ”Monolithic” SNARKs

No Incremental Proofs.

ZK Markets∗:

Linear (or worse) memory in witness size.

Prover complexity might not scale linearly, i.e. O(n log2 n);

Harder parallelization.

∗Drawing of D.Boneh. ZKProof MOOC Course.

Disadvantadges ”Monolithic” SNARKs

No Incremental Proofs.

ZK Markets∗:

Linear (or worse) memory in witness size.

Prover complexity might not scale linearly, i.e. O(n log2 n);

Harder parallelization.

∗Drawing of D.Boneh. ZKProof MOOC Course.

Disadvantadges ”Monolithic” SNARKs

No Incremental Proofs.

ZK Markets∗:

Linear (or worse) memory in witness size.

Prover complexity might not scale linearly, i.e. O(n log2 n);

Harder parallelization.

∗Drawing of D.Boneh. ZKProof MOOC Course.

Disadvantadges ”Monolithic” SNARKs

No Incremental Proofs.

ZK Markets∗:

Linear (or worse) memory in witness size.

Prover complexity might not scale linearly, i.e. O(n log2 n);

Harder parallelization.

∗Drawing of D.Boneh. ZKProof MOOC Course.

Proving Many Instances

What if instead of doing a single monolithic proof we cut computation in
chunks?

Naive Strategy

Recursive Proof Composition

Recursion

Recursion
Incrementally Verifiable Computation

Recursion
Incrementally Verifiable Computation

Recursion
Proof Carrying Data

Recursion Overhead

At each step, proof of corresponding chunk + proof that the previous
proof is accepted by the verifier of the snark.
Total prover work increases with respect to naive approach.
SNARK verifier must be a “small” circuit.

Proof Recursion in Elliptic Curves

Proof Recursion in Elliptic Curves

Proof Recursion in Elliptic Curves

Folding/Accumulation
Amortizing Prover Work: Probabilistically Reduce Two Statements to one

Folding/Accumulation
Example

Folding/Accumulation
Example

Recursive Proofs via Folding/Accumulation

Main idea: at each step execute only some cheap part the SNARK, and
accumulate/fold expensive part. Expensive part is deferred to end of
computation and only proven once.

FLIP: Fold Inner Product

A. Nitulescu, N.Paslis and C. Ràfols. Flip and Prove R1CS. EPRINT IACR.

Real-world example of computation naturally split in many chunks (R1CS
instances), one single prover proves many such chunks.

Alternatives?

Only in recursion with folding prover work is saved by amortization, but
construction is complex (cycles).

How to fold R1CS?

How to fold R1CS?
NOVA - Kothapalli, Setty, Tzialla’22

How to fold R1CS?
NOVA - Kothapalli, Setty, Tzialla’22

How to fold R1CS?
NOVA - Kothapalli, Setty, Tzialla’22

How can we achieve other advantages of recursion: efficient verifier?

Conclusion

No recursion, no cycles of elliptic curves.

Cost of prover: one single relaxed R1CS + O(number of instances)
pairings.

Novel use of homomorphic properties of target group commitments to fold
in parralel.

Holography Accumulation

N.Paslis, C. Ràfols and A. Zacharakis. sooon in EPRINT IACR.

Research Question

What are other meaningful settings in which we can accumulate/amortize
prover work?

Idea: Leverage Public Computation in privacy preserving delegation of
computation + Recursive Proofs?

Mar-lin

Research Question

What are other meaningful settings in which we can accumulate/amortize
prover work?
Idea: Leverage Public Computation in privacy preserving delegation of
computation + Recursive Proofs?

Mar-lin

Privacy Preserving SNARK Proof Delegation
Blueprint: (EOS,zkSaaS,..)

Privacy Preserving SNARK Proof Delegation
Research Question

Privacy Preserving SNARK Proof Delegation
Revisited

Public Computation as a Service

Public Computation as a Service

Public Computation as a Service

Public Computation as a Service

Public Computation as a Service

Public Computation as a Service

Public Computation as a Service

Public Computation as a Service

Folding Schemes with Local Verification

Folding Schemes with Local Verification

Public Computation aas with Folding Schemes with Local Verification

Take-away message

SNARK computation is inherently expensive;

“Amortization” of prover computation is a key element for scaling provers;

We have identified three key scenarios where it plays a role:

Proving many instances of computation without recursion;

Privacy preserving computation of delegation;

Recursive proof composition with different tradeoffs.

Credits: For the drawings on recursion, folding, and related, the slides are
modified from original slides of Anca Nitulescu. She gives credits for clip arts by
Iconfinder, Flaticon and juicyfish, and for illustrations to Disneyclips.

Take-away message

SNARK computation is inherently expensive;

“Amortization” of prover computation is a key element for scaling provers;

We have identified three key scenarios where it plays a role:

Proving many instances of computation without recursion;

Privacy preserving computation of delegation;

Recursive proof composition with different tradeoffs.

Credits: For the drawings on recursion, folding, and related, the slides are
modified from original slides of Anca Nitulescu. She gives credits for clip arts by
Iconfinder, Flaticon and juicyfish, and for illustrations to Disneyclips.

